Abstract

In the flames during low-pressure combustion, not only a rich variety of fullerenes but also many reactive intermediates can be produced (e.g., carbene, CH2) that are short-lived and cannot be stabilized directly under normal circumstances. These intermediates can be captured by fullerene carbon cages for stabilization. In this paper, three C71H2 isomers were synthesized in situ in low-pressure benzene-acetylene-oxygen diffusion flame combustion. The results, which were unambiguously characterized by single-crystal X-ray diffraction, show that the three isomers are carbene addition products of D5h-C70 on different sites. The relative energies and stability of different C71H2 isomers are revealed by Ultraviolet-Visible (UV-Vis) absorption spectroscopy, in combination with theoretical calculations, in this work. Both the in situ capture and theoretical study of these C71H2 isomers in low-pressure combustion will provide more information regarding carbene additions to other fullerenes or other carbon clusters at high temperatures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call