Abstract
According to WHO, dengue virus is classed among major threats for future pandemics and remains at large an unmet medical need as there are currently no relevant antiviral drugs whereas vaccine developments have met with safety concerns, mostly due to secondary infections caused by antibody-dependant-enhancement in cross infections among the four dengue serotypes. This adds extra complexity in dengue antiviral research and has impeded the progress in this field. Following through our previous effort which born the allosteric, dual-mode inhibitor SP-471P (a carbazole derivative, EC50 1.1 μM, CC50 100 μM) we performed further optimisation while preserving the two arylamidoxime arms and the bromoaryl domain present in SP-471P. Examination of the relative positions of these functionalities within this three-point pharmacophore ultimately led us to an indolazepinone scaffold and our lead compound SP-1769B. SP-1769B is among the most cell-efficacious against all serotypes (DENV2/3 EC50 100 nM, DENV1/4 EC50 0.95–1.25 μM) and safest (CC50 > 100 μM) anti-dengue compounds in the literature that also completely inhibits a secondary ADE-driven infection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.