Abstract

Conjugated microporous polymers (CMPs) have been considered a type of promising visible-light-driven, organic photocatalysts. However, apart from designing high-performance CMPs from a molecular perspective, little attention is paid to improving the photocatalytic properties of these polymers through macrostructural regulation. Herein, we prepared a kind of hollow spherical CMPs involving carbazole monomers and studied their performance on the selective photocatalytic oxidation of benzyl alcohol under visible light irradiation. The results demonstrate that the introduction of a hollow spherical structure improves the physicochemical properties of the as-designed CMPs, including the specific surface areas, optoelectronic characteristics, as well as photocatalytic performance, etc. In particular, the hollow CMPs can more effectively oxidize benzyl alcohol compared to pristine ones under blue light illumination, and produce >1 mmol of benzaldehyde in 4.5 h with a yield of up to 9 mmol·g−1·h−1, which is almost 5 times higher than that of the pristine ones. Furthermore, such hollow architecture has a similar enhanced effect on the oxidation of some other aromatic alcohols. This work shows that the deliberate construction of specific macrostructures can better arouse the photocatalytic activity of the as-designed CMPs, which will contribute to the further use of these organic polymer semiconductors in photocatalysis areas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.