Abstract
Silica-supported nickel phosphide (Ni2P) and Ni-rich bimetallic phosphide catalysts were investigated for the hydrodenitrogenation (HDN) of carbazole with and without a benzothiophene co-feed. The Ni2P/SiO2, Co0.1Ni1.9P/SiO2, and Fe0.03Ni1.97P/SiO2 catalysts exhibited high carbazole HDN activities and out-performed a commercial sulfided Ni–Mo/Al2O3 catalyst under the testing conditions employed. Co-feeding of benzothiophene inhibited carbazole HDN over the metal phosphides, but the Ni2P/SiO2 and Ni-rich bimetallic phosphide catalysts maintained higher activities than the sulfided Ni–Mo/Al2O3 catalyst. The product selectivities of the metal phosphide and sulfide catalysts were similar, except that the sulfided Ni–Mo/Al2O3 catalyst yielded more hydrogenated carbazoles while the metal phosphide catalysts produced more of the partially hydrogenated hydrocarbon cyclohexylbenzene. The metal phosphide catalysts favored ring-opened (hexylcyclohexane) and ring-contracted ((2-methylcyclopentyl)cyclohexane) products, indicating the presence of metal and Brönsted acid sites on the catalyst surfaces. The Ni2P/SiO2 and bimetallic phosphide catalysts exhibited excellent stabilities in the HDN conditions employed (carbazole-only and mixed feeds), as indicated by phase purity, average crystallite size and resistance to sulfur incorporation of the supported metal phosphide particles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.