Abstract

Organic photoswitches have attracted significant attention across various fields, such as sensing, bioimaging, photopharmacology, molecular machines, and solar energy storage. However, as a result of design complexities, achieving photothermally reversible ambient phosphorescence switching in the condensed state remains elusive. Herein, we explore the impact of norbornadiene (NBD)/quadricyclane (QC) substitution at position 5 of the benzonitrile acceptor covalently attached to the carbazole donor on photothermally reversible luminescence switching. Experimental investigations demonstrated that the CzN and TBCzN switches exhibited photothermally reversible fluorescence switching in solution. Moreover, in the condensed state, fluorescence and ambient phosphorescence switching were observed as a result of a low singlet-triplet (ΔEST) gap (CzN ⇆ CzQ, ΔESTCzN/CzQ = 0.05/0.28 eV; TBCzN ⇆ TBCzQ, ΔESTTBCzN/TBCzQ = 0.06/0.09 eV). Reversible ambient phosphorescence switching is primarily influenced by modulation of acceptor conjugation resulting from NBD ⇆ QC switching. This approach may provide important clues for the design of visible-light-absorbing photothermally reversible phosphorescent materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call