Abstract
AbstractThe present work describes the effect of structural modification of carbazole‐based photosensitizers carrying carboxylic acid as a common anchoring functionality, on the photovoltaic parameters of newly fabricated DSSCs. In this study, we have selected our previously reported three carbazole‐based derivatives, viz. S1‐3 having different structural designs, that is, D‐π‐A (S1), D‐D‐π‐A (S2), and A‐π‐D‐π‐A (S3) with different donor units and π‐spacers, but an identical cyanoacetic acid anchoring unit. We have evaluated their optical, electrochemical, and photovoltaic behaviors in order to explore their structure‐property relationships. Also, the theoretical investigations were performed to obtain a deeper understanding of their HOMO‐LUMO levels, charge distribution in FMOs, directional flow of electrons within the push‐pull type sensitizers, and optical behavior. Finally, the DSSCs were constructed by employing these dyes as sensitizers without any co‐absorbents and the performance of the devices was evaluated by using illuminated current‐voltage characteristics. Among the tested dyes, di‐anchoring S3 exhibited improved PCE of 3.77 % due to its strong adsorption on the TiO2 surface that resulted in superior VOC of the cell. While the S2 containing electron‐releasing anisole as an auxiliary donor exhibited better JSC value leading to the optimum PCE of 3.73 % which is comparable to that of S3. Obviously, these results validate the role of the π‐spacer and additional donor of the sensitizers on the overall performance of the DSSCs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.