Abstract

A simple carbazole based nanoprobe prepared by reprecipitation method shows selective sensing behavior for Fe3+ ion in aqueous medium. The prepared SDS capped 9-phenyl carbazole nanoparticles (9-PCzNPs) has narrower particle size distribution with an average diameter 35nm and zeta potential of −34.3mV predicted a good stability with negative surface charge over the nanoparticles. The Field Emission Scanning Electron Microscopy (FE-SEM) image showed cubic shape morphology of nanoparticles. The aqueous suspension of SDS capped 9-phenyl carbazole nanoparticles exhibited aggregation induced enhanced red shifted intense emission in comparison with the emission arising from dilute solution of 9-phenyl carbazole in DCM. The cation recognition test based on fluorescence change shows Fe3+ ion induce significant fluorescence quenching, however remaining cations responds negligibly. The obtained quenching data fit into Stern–Volmer relation in the concentration range of 0.0–1.0μg·mL−1 of Fe3+ ion solution and the detection limit is 0.0811μg·mL−1. The probable mechanism of fluorescence quenching of SDS capped 9-PCzNPs is because of adsorption of Fe3+ ion over the negatively charged surface of NPs through electrostatic interaction. Thus the proposed method was successfully applied for the detection of Fe3+ ion in environmental water sample.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.