Abstract

The synthesis, isomerism, photophysics and electrophosphorescent characterization of some functional cyclometallated iridium(III) complexes containing 2-[2-(N-phenylcarbazolyl)]pyridine and 2-[3-(N-phenylcarbazolyl)]pyridine molecular frameworks are described. A carbazole-based coplanar molecule (CmInF) obtained through the intramolecular ring closure of aryl substitutions at the C3 and C6 positions exhibits a high triplet energy (ET = 2.77 eV), morphological stability (Tg = 195 °C) and hole mobility in the range of up to 5 × 10−3 cm2 V−1 s−1. Highly efficient multi-color electrophosphorescent devices have been successfully achieved employing CmInF as the universal host material doped with phosphorescent dopants of various colors under the same device configuration of ITO/PEDOT:PSS (300 A)/TCTA (250 A)/CmInF: dopant (250 A)/TAZ (500 A)/LiF/Al (PEDOT:PSS = poly(ethylene dioxythiophene):polystyrene sulfonate; TCTA = 4,4′,4′′-tri(N-carbazolyl)triphenylamine; TAZ = 3-(4-biphenylyl)-4-phenyl-5-(4-tert-butylphenyl)-1,2,4-triazole). Through the mixing of two phosphorescent dopants of complementary colors, we also fabricated a two-color white organic light-emitting device (WOLED) with the same device structure consisting of 12 wt% FIrpic and 0.3 wt% (Mpg)22Ir(acac) co-doped into CmInF as a single-emitting-layer, which exhibits peak WOLED efficiency of 13.4% (23.4 cd A−1) and 11.2 lm W−1 with the Commission Internationale de L'Eclairage (CIE) coordinates of (0.33, 0.37). In addition, the use of such device structure in full-color OLEDs has the advantages of simplifying manufacturing process and reducing production cost that are the critical issues of commercialization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.