Abstract

We sought to elucidate the protein carbamoylation patterns associated with cyanate neuropathy relative to cyanide poisoning. We hypothesized that under a diet deficient in sulfur amino acids (SAA), the carbamoylation pattern associated with cyanide poisoning is similar to that of cyanate neuropathy. Male rats (6–8 weeks old) were fed a diet with all amino acids (AAA) or 75%-deficiency in SAA and treated with 2.5 mg/kg/body weight (bw) NaCN, or 50 mg/kg/bw NaOCN, or 1 μl/g/bw saline, for up to 6 weeks. Albumin and spinal cord proteins were analyzed using liquid chromatography mass spectrometry (LC-MS/MS). Only NaOCN induced motor deficits with significant levels of carbamoylation. At Day 14, we found a diet-treatment interaction effect on albumin carbamoylation (p = 0.07). At Day 28, no effect was attributed to diet (p = 0.71). Mean number of NaCN-carbamoylated sites on albumin was 47.4% higher relative to vehicle (95% CI:16.7-86.4%). Only NaOCN carbamoylated spinal cord proteins, prominently, under SAA-restricted diet. Proteins targets included myelin basic and proteolipid proteins, neurofilament light and glial fibrillary acidic proteins, and 2', 3' cyclic-nucleotide 3'-phosphodiesterase. Under SAA deficiency, chronic but not acute cyanide toxicity may share biomarkers and pathogenetic similarities with cyanate neuropathy. Prevention of carbamoylation may protect against the neuropathic effects of cyanate.

Highlights

  • Dietary dependency on cyanogenic cassava and low intake in sulfur amino acid (SAA) have been implicated in outbreaks of a central motor neuron disease known as konzo

  • We hypothesized that under a diet deficient in sulfur amino acids (SAA), the carbamoylation pattern associated with cyanide poisoning is similar to that of cyanate neuropathy

  • On the assumption that these findings would hold true for additional experimental time points and time dependent correlations between levels of carbamoylation and NaOCN-induced deficits in a large sample of rats, our results suggest that cyanate neuropathy may be mediated through carbamoylation

Read more

Summary

Introduction

Dietary dependency on cyanogenic cassava and low intake in sulfur amino acid (SAA) have been implicated in outbreaks of a central motor neuron disease known as konzo. Cassava is a carbohydrate-enriched and cyanogenic crop with a very low content in proteins and only 1-2% content in SAA, which are needed for humans to detoxify cyanide (Diasolua Ngudi et al 2002, Kassa et al 2011, Nunn et al 2011). It contains linamarin, a cyanogenic compound that is metabolically converted to cyanohydrins and hydrogen cyanide, a well-known mitochondrial toxin. Limited progress has been made partially due to the lack of experimental models

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.