Abstract

Forty strains of Mn-oxidizing microalgae (MnOMs) with different Mn2+ oxidation mechanisms were identified from two aquatic environments. Among them, three strains of isolates (Chlamydomonas sp. WH1–1, Chlamydomonas sp. WH1–4, and Chlorella sp. WH2–5) oxidize Mn2+ by increasing the ambient pH and by secreting Mn oxidation factors (e.g., superoxide-production enzymes and/or other Mn oxidases) into the extracellular environment at the same time. In carbamazepine (CBZ) removal by MnOMs and/or Bio-MnOx, the combination of MnOMs and Bio-MnOx significantly increased the CBZ (1 mg/L) removal efficiency from 36.05% (by MnOMs alone) and 20.11% (by Bio-MnOx alone) to 80.13% by two synergistic mechanisms. One of the synergistic mechanisms was confirmed as that the Mn2+ was re-oxidized by MnOMs to Bio-MnOx, which can promote the CBZ removal, and another was the mutual exchange of degradation products of CBZ as shared reactants between MnOMs and Bio-MnOx. The degradation intermediates of CBZ were analyzed using high-performance liquid chromatography-tandem mass spectrometry, based on which the CBZ degradation pathway by MnOMs and Bio-MnOx was proposed. These findings expand existing knowledge on the Mn2+ oxidation mechanisms of MnOMs, and indicate that MnOMs and their generated Bio-MnOx are promising for the removal of CBZ or other pharmaceutical contaminants from wastewater.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.