Abstract

Intestinal myofibroblasts (IMFs) that exist adjacent to the basement membrane of intestines have contractility and contribute to physical barriers of the intestine. Nerve endings distribute adjacent to IMFs, suggesting neurotransmitters may influence IMFs motility; however, there is no direct evidence showing the interaction. Here, we isolated IMFs from rat colon and investigated the effect of acetylcholine on IMFs contractility. In the collagen gel contraction assay, carbachol (1 - 10 microM) and the muscarinic receptor agonist bethanechol (30 - 300 microM) dose-dependently induced IMFs contraction. Pretreatment with the muscarinic receptor antagonist atropine (1 - 10 nM) inhibited carbachol-induced contraction. In RT-PCR, mRNA expression of all muscarinic receptor subtypes (M(1) - M(5)) was detected in IMFs. Subsequently we found pretreatment with the muscarinic M(2) receptor antagonist 11-([2-[(diethylamino)methyl]-1-piperdinyl]acetyl)-5,11-dihydro-6H-pyrido[2,3-b][1,4]benzodiazepine-6-one (AF-DX116) (10 and 30 nM) or the muscarinic M(3) receptor antagonist 4-diphenylacetoxy-N-methyl-piperidine (4-DAMP) (3 and 10 nM) dose-dependently inhibited carbachol-induced contraction. In Ca(2+) measurement, 1 - 10 microM carbachol and 30 - 300 microM bethanechol elevated the intracellular Ca(2+) concentration ([Ca(2+)](i)) in IMFs. Atropine (10 nM) eliminated carbachol-induced [Ca(2+)](i) elevation. The Ca(2+)-channel blocker LaCl(3) (3 microM) abolished carbachol-induced [Ca(2+)](i) elevation and contraction. Furthermore, AF-DX116 and 4-DAMP dose-dependently inhibited the carbachol-induced [Ca(2+)](i) elevation. These observations suggest that acetylcholine elicits Ca(2+)-dependent IMF contraction through muscarinic M(2) and M(3) receptors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.