Abstract

A new open-source program package named Caracal covering simulations of molecular systems with ring polymer molecular dynamics (RPMD) is presented. It combines a powerful RPMD implementation including chemical reaction rate calculations and biased periodic and nonperiodic samplings with a collection of easy to set up potential energy surface (PES) methodologies, thus delivering an all-inclusive approach. Most implemented PESs are based on the QMDFF and EVB-QMDFF methods. Where the quantum mechanically derived force field (QMDFF) can be set up for an arbitrary molecular system in a black-box fashion, the empirical valence bond (EVB)-QMDFF connects two QMDFFs and is able to represent the PES of a chemical reaction. With our previously published flavors of this composite method, PESs for almost arbitrary gas phase thermal ground state reactions can be set up. Given an optimized reaction path, the mechanism of the reaction can be classified and RPMD rate constants can be obtained via umbrella sampling and recrossing calculations on an EVB-QMDFF PES. Further, QMDFFs can be polymerized for the description of liquid systems. In this paper, the internal structure as well as the handling philosophy of Caracal are outlined. Further, examples of the different possible kinds of calculations are given.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call