Abstract
Spearheaded by the therapeutic use of chimeric antigen receptors (CARs) targeting CD19, synthetic immunology has entered the clinical arena. CARs are recombinant receptors for antigen that engage cell surface molecules through the variable region of an antibody and signal through arrayed T-cell activating and costimulatory domains. CARs allow redirection of T-cell cytotoxicity against any antigen of choice, independent of MHC expression. Patient T cells engineered to express CARs specific for CD19 have yielded remarkable outcomes in subjects with relapsed/refractory B- cell malignancies, setting off unprecedented interest in T-cell engineering and cell-based cancer immunotherapy. In this review, we present the challenges to extend the use of CAR T cells to solid tumors and other pathologies. We further highlight progress in CAR design, cell manufacturing, and genome editing, which in aggregate hold the promise of generating safer and more effective genetically instructed immunity. Novel engineered cell types, including innate T-cell types, natural killer (NK) cells, macrophages, and induced pluripotent stem cell-derived immune cells, are on the horizon, as are applications of CAR T cells to treat autoimmunity, severe infections, and senescence-associated pathologies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.