Abstract

Multiple myeloma (MM) is a hematological malignancy caused by malignant proliferation of plasma cells in bone marrow. Over the last decade, the survival outcome of patients with multiple myeloma (MM) has been substantially improved with the emergence of novel therapeutic agents. However, MM remains an incurable neoplastic plasma cell disorder. In addition, almost all MM patients inevitably relapse due to drug resistance. Chimeric antigen receptor (CAR)-modified NK cells represent a promising immunotherapeutic modality for cancer treatment. In this study, NK92 cells were engineered to express the third generation of BCMA CAR. In vitro, BCMA CAR-engineered NK92 cells displayed higher cytotoxicity and produced more cytokines such as IFN-γ and granzyme B than NK92 cells when they were co-cultured with MM cell lines. Furthermore, BCMA CAR-engineered NK92 cells released significantly higher amounts of cytokines and showed higher cytotoxicity when they were exposed to primary cells isolated from MM patients. The cytotoxicity of BCMA CAR NK92 cells was enhanced after MM cells were treated with bortezomib. Additionally, BCMA CAR NK92 cells exhibited potent antitumor activities in subcutaneous tumor models of MM. These results demonstrate that regional administration of BCMA CAR NK92 cells is a potentially promising strategy for treating MM.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.