Abstract

Nowadays, one of the main challenges clinicians face is malignancies. Through the progression of technology in recent years, tumor nature and tumor microenvironment (TME) can be better understood. Because of immune system involvement in tumorigenesis and immune cell dysfunction in the tumor microenvironment, clinicians encounter significant challenges in patient treatment and normal function recovery. The tumor microenvironment can stop the development of tumor antigen-specific helper and cytotoxic T cells in the tumor invasion process. Tumors stimulate the production of proinflammatory and immunosuppressive factors and cells that inhibit immune responses. Despite the more successful outcomes, the current cancer therapeutic approaches, including surgery, chemotherapy, and radiotherapy, have not been effectiveenough for tumor eradication. Hence, developing new treatment strategies such as monoclonal antibodies, adaptive cell therapies, cancer vaccines, checkpoint inhibitors, and cytokines helps improve cancer treatment. Among adoptive cell therapies, theinteraction between the immune system and malignancies and using molecular biology led tothe development of chimeric antigen receptor (CAR) T cell therapy. CAR-modified immune cells are one of the modern cancer therapeutic methods with encouraging outcomes in most hematological and solid cancers. The current study aimed to discuss the structure, formation, subtypes, and application of CAR immune cells in hematologic malignancies and solid tumors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call