Abstract

In this paper the statement of initial value problems for fractional differential equations with noninstantaneous impulses is given. These equations are adequate models for phenomena that are characterized by impulsive actions starting at arbitrary fixed points and remaining active on finite time intervals. Strict stability properties of fractional differential equations with non-instantaneous impulses by the Lyapunov approach is studied. An appropriate definition (based on the Caputo fractional Dini derivative of a function) for the derivative of Lyapunov functions among the Caputo fractional differential equations with non-instantaneous impulses is presented. Comparison results using this definition and scalar fractional differential equations with non-instantaneous impulses are presented and sufficient conditions for strict stability and uniform strict stability are given. Examples are given to illustrate the theory.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.