Abstract

Many authors have observed experimentally that the macroscopic yield surface changes substantially its shape during plastic flow, specially in metals which suffer significant work hardening. The evolution is frequently characterized by a corner effect in the stress direction of loading, and a flatter shape in the opposite direction. In order to incorporate this effect many constitutive models for yield surface evolution have been proposed in the literature. In this work we perform some numerical predictions for experiments similar to the ones performed in the literature using a multilayer kinematic hardening model which employs the associative Prager’s translation rule. Using this model we prescribe offsets of probing plastic strain, so apparent yield surfaces can be determined in a similar way as it is performed in the actual experiments. We show that similar shapes to those reported in experiments are obtained. From the simulations we can conclude that a relevant part of the apparent yield surface evolution may be related to the anisotropic kinematic hardening field.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.