Abstract

In order to quantitatively describe the energetics of biomolecular rearrangements, it is necessary to identify reaction coordinates that accurately capture the relevant transition events. Here, we perform simulations of A-site tRNA movement (∼20 Å) during hybrid-state formation in the ribosome and quantify the ability of interatomic distances to capture the transition state ensemble. Numerous coordinates are found to be accurate indicators of the transition state, allowing tRNA rearrangements to be described as diffusion across a one-dimensional free-energy surface. In addition to providing insights into the physical-chemical relationship between biomolecular structure and dynamics, these results can help enable single-molecule techniques to probe the free-energy landscape of the ribosome.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.