Abstract

Unveiling the internal dynamics of rotation in molecular machine at single-molecule scale is still a challenge. In this work, three crank-shaped molecules are elaborately designed with the conformational flipping between syn and anti fulfilled by two naphthyl groups rotating freely along 1,3-butadiynyl axis. By investigating the single-molecule conductance using scanning tunnelling microscope break junction (STM-BJ) technique and theoretical simulation, the internal rotation of these crank-shaped molecules is well identified through low and high conductance corresponding to syn- and anti-conformations. As demonstrated by theoretically computational study, the orbital energy changes with the conformational flipping and influences the intraorbital quantum interference, thus eventually modulating the single-molecule conductance. This work demonstrates single-molecule conductance measurement to be a rational approach for characterizing the internal rotation of molecular machines.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call