Abstract

AbstractUnderstanding mineral precipitation induced porosity clogging and being able to quantify its non‐linear feedback on transport properties is fundamental for predicting the long‐term evolution of energy‐related subsurface systems. Commonly applied porosity‐diffusivity relations used in numerical simulations on the continuum‐scale predict the case of clogging as a final state. However, recent experiments and pore‐scale modeling investigations suggest dissolution‐recrystallization processes causing a non‐negligible inherent diffusivity of newly formed precipitates. To verify these processes, we present a novel microfluidic reactor design that combines time‐lapse optical microscopy and confocal Raman spectroscopy, providing real‐time insights of mineral precipitation induced porosity clogging under purely diffusive transport conditions. Based on 2D optical images, the effective diffusivity was determined as a function of the evolving porous media, using pore‐scale modeling. At the clogged state, Raman isotopic tracer experiments were conducted to visualize the transport of deuterium through the evolving microporosity of the precipitates, demonstrating the non‐final state of clogging. The evolution of the porosity‐diffusivity relationship in response to precipitation reactions shows a behavior deviating from Archie's law. The application of an extended power law improved the description of the evolving porosity‐diffusivity, but still neglected post‐clogging features. Our innovative combination of microfluidic experiments and pore‐scale modeling opens new possibilities to validate and identify relevant pore‐scale processes, providing data for upscaling approaches to derive key relationships for continuum‐scale reactive transport simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.