Abstract
Abstract. The estimation of daily variations in aerosol concentrations using meteorological data is meaningful and challenging, given the need for accurate air quality forecasts and assessments. In this study, a 3×50-layer spatiotemporal deep learning (DL) model is proposed to link synoptic variations in aerosol concentrations and meteorology, thereby building a “deep” Weather Index for Aerosols (deepWIA). The model was trained and validated using 7 years of data and tested in January–April 2022. The index successfully reproduced the variation in daily PM2.5 observations in China. The coefficient of determination between PM2.5 concentrations calculated from the index and observation was 0.72, with a root mean square error (RMSE) of 16.5 µg m−3. The DeepWIA performed better than Weather Forecast and Research (WRF)-Chem simulations for eight aerosol-polluted cities in China. The simulating power of the model also outperformed commonly used PM2.5 concentration retrieval models based on random forest (RF), extreme gradient boost (XGB), and multilayer perceptron (MLP). The index and the DL model can be used as robust tools for estimating daily variations in aerosol concentrations.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.