Abstract

Mass transfer in the liquid phase of gas-liquid multiphase flows usually takes place at a considerably slower rate than the transfer of momentum, so mass flux boundary layers are much thinner than momentum boundary layers. In Direct Numerical Simulations (DNS) the resolution requirement for flows where the Schmidt number (kinematic viscosity divided by mass diffusion) is high are therefore significantly higher than for flow without mass transfer. While it is, in principle, possible to capture the mass transfer using adaptive grid refinement, the structure of the boundary layer is relatively simple and well understood. Here we discuss a multi-scale approach to compute the mass transfer from buoyant bubbles, using a boundary-layer approximation next to the bubble and a relatively coarse grid for the rest of the flow.Copyright © 2013 by ASME

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.