Abstract

Magnetic whirls in chiral magnets, so-called skyrmions, can be manipulated by ultrasmall current densities. Here we study both analytically and numerically the interactions of a single skyrmion in two dimensions with a small hole in the magnetic layer. Results from micromagnetic simulations are in good agreement with effective equations of motion obtained from a generalization of the Thiele approach. Skyrmion-defect interactions are described by an effective potential with both repulsive and attractive components. For small current densities a previously pinned skyrmion stays pinned whereas an unpinned skyrmion moves around the impurities and never gets captured. For higher current densities, j_c1 < j < j_c2, however, single holes are able to capture moving skyrmions. The maximal cross section is proportional to the skyrmion radius and to Sqrt(alpha), where alpha is the Gilbert damping. For j > j_c2 all skyrmions are depinned. Small changes of the magnetic field strongly change the pinning properties, one can even reach a regime without pinning, j_c2=0. We also show that a small density of holes can effectively accelerate the motion of the skyrmion and introduce a Hall effect for the skyrmion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call