Abstract

Simple SummaryProviding disease resistance in our crop plants is our ongoing exercise for plant pathologists/breeders/geneticists. Pathogens are continually evolving and releasing new variants. The variants arise through mutations or through sexual cycles on their respective alternate hosts. Thus, the search continues for unique genes for resistance. Another newer concept is the “pyramiding” of resistance genes. It has been shown that a cultivar may last only 3 years or so before being overcome by a new variant of the pathogen. The release of new cultivars with up to four resistance genes will delay their breakdown. In our ongoing work we have also produced pyramids containing a combination of resistance genes, including SrCad for resistance to new races of stem rust, Lr34, which is a major gene for resistance to leaf rust, and Fhb1, which is a common FHB QTL. This required the production of a series of doubled haploids (DH) to produce lines containing all four genes in reasonable-sized populations. A complex series of four-way crosses were required to generate the various gene combinations. In the studies reported here, the essential tools for marker-assisted-selection are produced, i.e., mapping populations containing the resistance genes and molecular makers assigned to each gene. It should be possible to simultaneously manipulate several resistance genes from existing genetic stocks without requiring complex cross combinations. Derivatives from 4 species from the secondary gene pool of wheat—1 diploid (T. monococcum), 2 tetraploid (T. carthlicum; T. timopheevi), and 1 hexaploid (T. miguschovae)—were screened for resistance to Fusarium head blight, leaf rust, stem rust, and stripe rust. Where screening, genetic studies, and mapping were completed it was shown that all species carried resistance to multiple plant diseases. Some derived lines carried resistance to up to four different diseases. Where mapping was completed, it was shown that different diseases mapped to different chromosomes within any one accession.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.