Abstract

The new model reduces the impact of local spectral and temporal variability by estimating a finite set of spectral and temporal warping factors which are applied to speech at the frame level. Optimum warping factors are obtained while decoding in a locally constrained search. The model involves augmenting the states of a standard hidden Markov model (HMM), providing an additional degree of freedom. It is argued in this paper that this represents an efficient and effective method for compensating local variability in speech which may have potential application to a broader array of speech transformations. The technique is presented in the context of existing methods for frequency warping-based speaker normalization for ASR. The new model is evaluated in clean and noisy task domains using subsets of the Aurora 2, the Spanish Speech-Dat-Car, and the TIDIGITS corpora. In addition, some experiments are performed on a Spanish language corpus collected from a population of speakers with a range of speech disorders. It has been found that, under clean or not severely degraded conditions, the new model provides improvements over the standard HMM baseline. It is argued that the framework of local warping is an effective general approach to providing more flexible models of speaker variability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call