Abstract
In this paper, we introduce methods to differentiate posed expressions from spontaneous ones by capturing global spatial patterns embedded in posed and spontaneous expressions, and by incorporating gender and expression categories as privileged information during spatial pattern modeling. Specifically, we construct multiple restricted Boltzmann machines (RBMs) with continuous visible units to model spatial patterns from facial geometric features given expression-related factors, i.e., gender and expression categories. During testing, only facial geometric features are provided, and the samples are classified into posed or spontaneous expressions according to the RBM with the largest likelihood. Furthermore, we propose efficient inference algorithm by extending annealing importance sampling to RBM with continuous visible units for calculating partition function of RBMs. Experimental results on benchmark databases demonstrate the effectiveness of the proposed approach in modelling global spatial patterns as well as its superior posed and spontaneous expression distinction performance over existing approaches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.