Abstract
While fluid–structure interaction (FSI) problems are ubiquitous in various applications from cell biology to aerodynamics, they involve huge computational overhead. In this paper, we adopt a machine learning (ML)-based strategy to bypass the detailed FSI analysis that requires cumbersome simulations in solving the Navier–Stokes equations. To mimic the effect of fluid on an immersed beam, we have introduced dissipation into the beam model with time-varying forces acting on it. The forces in a discretized set-up have been decoupled via an appropriate linear algebraic operation, which generates the ground truth force/moment data for the ML analysis. The adopted ML technique, symbolic regression, generates computationally tractable functional forms to represent the force/moment with respect to space and time. These estimates are fed into the dissipative beam model to generate the immersed beam’s deflections over time, which are in conformity with the detailed FSI solutions. Numerical results demonstrate that the ML-estimated continuous force and moment functions are able to accurately predict the beam deflections under different discretizations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.