Abstract

This paper was characterized of capturing vibration energy from transmission lines galloping based on electromagnetic generator (EMG) and the joint utilization thereof to assessment of galloping state. An EMG based on the rotary structure of stator and rotor was proposed oriented to the structural features of transmission lines, and the design parameters were optimized to enhance the output through finite element simulation. The output performance of EMG was conducted on the linear motor testing platform, the output of EMG under the conductor galloping conditions reached 0.16 to 3.01 V and 0.96 to 14.46 mA, respectively, the maximum power of EMG through power management circuit reached 0.12 to 12.81 mW from the vibration frequency of 0.5 to 2.5 Hz. The feasibility of EMG was well validated on the conductor galloping testing platform, the maximum power through power management circuit reached 1.47 to 13.51 mW from the vibration frequency of 0.7 to 2.8 Hz, and the conductor galloping state can be preliminarily judged according to the proposed peak value analysis, validating that the proposed EMG has great potential application for energy harvesting of conductor galloping for low-power electronic appliances and the evaluation of conductor galloping state.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.