Abstract
A highly correlated combination of the equation-of-motion coupled cluster (EOM-CC) Dyson orbital and the multicentric B-spline time-dependent density functional theory (TDDFT)-based approach is proposed and implemented within the single-channel approximation to describe molecular photoionization processes. The twofold objective of the approach is to capture interchannel coupling effects, missing in the B-spline DFT treatment, and to explore the response of Dyson orbitals to strong correlation effects and its influence on the photoionization observables. We validate our scheme by computing partial cross sections, branching ratios, asymmetry parameters, and molecular frame photoelectron angular distributions of simple molecules. Finally, the method has been applied to the study of photoelectron spectra of the Ni(C3H5)2 molecule, where giant correlation effects completely destroy the Koopmans picture.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.