Abstract

Our study highlights the versatility of tip-assisted terahertz spectroscopy in probing coherent magnons, the elementary quanta of spin waves in magnetic materials. We identify two distinct coherent magnon types in canted antiferromagnet YFeO3. The remarkable consistency with far-field terahertz spectroscopy in crucial magnon parameters, such as coherence time and resonance frequency, firmly establishes the credibility of tip-assisted terahertz spectroscopy. Notably, we capture more coherent ferromagnetic magnons near the sample surface, underscoring the strength of the technique. This approach paves the way for local, free-standing, and real-space investigations of spin waves in solid magnets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call