Abstract

Cavities and adsorption sites in adsorption materials can be easily blocked in complex media containing solid particles and floccules, which limit the applicability of these materials. This study demonstrates the synthesis of cadmium(II) ion-imprinted polymers (Cd-IIPs) and nonion-imprinted polymers (NIPs) via reversible addition–fragmentation chain transfer precipitation polymerization (RAFTPP). Microspheres of IIPs and NIPs were modified by grafting bicomponent polymer brushes with different ratios of a hydrophilic component, hydroxyethyl methacrylate (HEMA), and a rigid component, styrene. The maximum adsorption capacities of the IIPs and NIPs in pure water are 65.5 and 24.5 mg/g, respectively. Specifically, the 9:1-IIP exhibits excellent antiblockage and anti-interference performance, with an adsorption capacity considerably higher than those of IIPs in simulated wastewater including SiO2 solid particles and floccules. This higher performance suggests that the 9:1-IIP has the rigidity to resist chaff ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.