Abstract

The extreme conditions in Neutron Stars make them ideal test facilities for fundamental interactions. A Neutron Star can capture Dark Matter via scattering. As a result of the scattering, Dark Matter kinetic energy is transferred to the star. An observational consequence of this can be the warming of old neutron stars to near-infrared temperatures. Different approximations or simplifications have been applied to previous analyses of the capture process. In this article, we summarise a significantly improved treatment of Dark Matter capture, which properly accounts for all relevant physical effects over a wide range of Dark Matter masses. Among them are gravitational focusing, a fully relativistic scattering treatment, Pauli blocking, neutron star opacity and multiple scattering effects. This paper cites general expressions that allow the capture rate to be computed numerically, and simplified expressions for particular types of interactions or mass regimes, which greatly increase the efficiency of computation. As a result of our method, we are able to model the scattering of Dark Matter from any neutron star constituent as well as the capture of Dark Matter in other compact objects. Our results are applied to scattering of Dark Matter from neutrons, protons, leptons and exotic baryons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call