Abstract

In non-ferrous metal smelting, the problem of gaseous arsenic in high-sulfur flue gas is difficult to solve. Now we have developed oxygen-enriched amorphous iron manganese oxide (AFMBO) based on the unique superiority of iron-manganese oxide for arsenic capture to realize the effective control of gaseous arsenic in the non-ferrous smelting flue gas. The experimental results show that the arsenic adsorption capacity of AFMBO is up to 102.7 mg/g, which has surpassed most of the current adsorbents. In particular, AFMBO can effectively capture gaseous arsenic even at 12% v/v SO2 concentrations (88.45 mg/g). Moreover, the spent AFMBO possesses pronounced magnetic characteristics that make it easier to separate from dust, which is conducive to reducing the secondary environmental risk of arsenic. In terms of mechanism study, various characterization methods are used to explain the important role of lattice oxygen and adsorbed oxygen in the capture process of gaseous arsenic. Moreover, the reason for the efficient arsenic removal performance of AFMBO is also reasonably explained at the microscopic level. This study provides ideas and implications for gaseous arsenic pollution control research.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.