Abstract

A typical commercial aircraft trajectory consists of a series of flight segments. An aircraft switches from one segment to another when certain specified variables reach their desired values. Trajectory synthesis for air traffic control automation must be consistent with practical pilot procedures. We examine capture conditions for merging trajectory segments to model commercial aircraft descent in trajectory synthesis. These conditions translate into bounds on measurements of atmospheric wind, pressure, and temperature. They also define ranges of thrust and drag feasible for a descent trajectory. Capture conditions are derived for the Center-TRACON Automation System developed at NASA Ames Research Center for automated air traffic control. Various uses of capture conditions are discussed. A Boeing 727-200 aircraft is used to provide numerical examples of capture conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.