Abstract

We investigate the ultrafast carrier dynamics in metalorganic chemical vapor deposition-grown InGaAs/GaAs quantum dots emitting at 1.3 μm. Time-resolved photoluminescence upconversion measurements show that the carriers photoexcited in the barriers relax to the quantum-dot ground state within a few picoseconds. At low temperatures and high carrier densities, the relaxation dynamics is dominated by carrier–carrier scattering. In contrast, at room temperature, the dominant relaxation process for electrons is scattering between quantum-dot levels via multiple longitudinal optical (LO)-phonon emission. The reverse process, i.e., multiple LO-phonon absorption, governs the thermal re-emission of electrons from the quantum-dot ground state.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.