Abstract
To explore the effects of captopril on calpain‑mediated apoptosis of myocardial cells and cardiac function in diabetic rats, 30 adult male Sprague‑Dawley rats were randomly divided into three groups: Negative control (NC group), untreated diabetic rats (DM group) and diabetic rats treated with captopril (Cap group). Diabetes was induced by streptozotocin injection. Captopril was intragastrically administered at a daily dose of 50mg/kg for 12weeks; the NC and DM groups received an equivalent volume of saline. After 12weeks of treatment, left ventricular systolic pressure (LVSP), left ventricular end‑diastolic pressure (LVDEP), maximal rate of left ventricular pressure increase (+dp/dtmax), maximal rate of left ventricular pressure decrease (‑dp/dtmax) and left ventricular mass index (LVMI) were measured. The levels of calpain‑1, calpain‑2, B‑cell lymphoma (Bcl)‑2, Bcl‑2 associated protein X (Bax) and total caspase‑3 were detected in cardiac tissue by western blot analysis. The apoptotic index (AI) was assessed with a terminal deoxynucleotidyl transferase‑mediated dUTP nick‑end labeling assay. The ultrastructure of cardiac tissue was determined by transmission electron microscopy. Compared with the NC group, LVDEP and LVMI were increased, whereas LVSP, +dp/dtmax and ‑dp/dtmax were decreased in the DM group. In the Cap group, LVDEP and LVMI were decreased, whereas LVSP, +dp/dtmax and ‑dp/dtmax were increased compared with the DM group. Bcl‑2 protein expression was decreased, whereas the levels of calpain‑1, calpain‑2, Bax and total caspase‑3 protein were increased in the DM group, compared with the NC group. Cap treatment increased Bcl‑2 protein expression and decreased calpain‑1, calpain‑2, Bax and total caspase‑3 protein expression compared with the DM group. Additionally, the AI was increased in the DM group compared with the NC group, and decreased in the Cap group compared with the DM group. Furthermore, ultrastructural examination demonstrated that myocardial cell injury was reduced in the Cap group compared with the DM group. Therefore, captopril improved myocardial structure and ventricular function, by inhibiting calpain‑1 and calpain‑2 activation, increasing Bcl‑2 expression, reducing Bax expression and subsequently inhibiting caspase‑3‑dependent apoptosis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.