Abstract

Early weaning-induced stress causes diarrhoea, thereby reducing the growth performance of piglets. Gut bacterial dysbiosis has emerged as a leading cause of post-weaning diarrhoea. The present study aimed to investigate the effect of capsulized faecal microbiota transplantation (FMT) on the gut bacterial community, immune response and gut barrier function of piglets. Thirty-two weaned barrows were randomly divided into two groups. The recipient group was inoculated orally with capsulized faecal microbiota of healthy Tibetan pigs during the whole period of the trial, while the control group was given an empty capsule. The feed-to-gain ratio, diarrhoea ratio, and histological damage score of recipient piglets were significantly decreased. FMT treatment significantly increased the colon length of piglets. Furthermore, the relative abundances of Firmicutes, Euryarchaeota, Tenericutes, Lactobacillus, and Methanobrevibacter in the colon of recipient piglets were increased, and the relative abundances of Campylobacter and Proteobacteria were significantly decreased compared with those in the control group. CD4+ lymphocytes and CD4+/CD8+ ratio in the peripheral blood of recipient piglets were significantly increased. FMT treatment increased the IL-4 and IL-10 levels and decreased the TNF-α and INF-γ levels in the colonic tissue of piglets. The recipient piglets’ mRNA expression of TLR2, TLR8, NF-κB, and iNOS was significantly regulated. In addition, FMT significantly enhanced the gene expression of ZO-1. Overall, treatment with capsulized FMT ameliorated diarrhoea in piglets, with significant effects on limiting colon inflammatory responses, downregulating the TLR signalling pathway and the gene expression of iNOS, and strengthening intestinal barrier function by modulating the constituents of the gut microbiota.

Highlights

  • The mammalian digestive tract harbours a complex and dynamic microbial ecosystem mainly composed of bacteria

  • Individual body weight (BW) was recorded after all pigs were food-deprived for 12 h on day 21, and feed consumption was recorded as the amount of feed offered daily minus the remaining quantity on the morning during the experiment, which were used to determine the average weight gain (ADG), average daily feed intake (ADFI) and ratio of feed to gain (F/G)

  • There were no differences in ADFI, ADG or final BW between recipient and control piglets (P > 0.05)

Read more

Summary

Introduction

The mammalian digestive tract harbours a complex and dynamic microbial ecosystem mainly composed of bacteria. Most studies focusing on the weaning transition of piglets have reported a reduction in the biodiversity of intestinal microbiota diversity [10], and such disturbances of the gut microbial ecosystem and loss of diversity at early stages of life can strikingly increase the risk of post-weaning diarrhoea and enteric infections [11]. The connection between FMT and the structural changes of gut microbiota is not fully illustrated, and even the possibility of capsule FMT to ameliorate the diarrhoea of piglets from weaning stress as well as the underlying mechanism is little known. We hypothesized that capsule FMT would modulate the structure of the gut microbiota, ameliorate diarrhoea caused by weaning stress, and improve immune function in recipient piglets. Weaning piglets were selected to explore the effect of capsulized Tibetan pigs’ faecal microbiota on gut microbiota, diarrhoea, growth performance, and immune traits of weaning piglets

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call