Abstract
A capsule is formed when a group of additional neurons is added to existing convolutional layer in a typical convolutional neural network (CNN). Capsules have activity vector that represents instantiation parameters of an object or part of an object. Capsule network has recently been introduced by Hinton to overcome the shortcomings of typical CNN model trained with back-propagation. In this work, we investigate the use of capsule networks for recognition of handwritten digits of Urdu. Our results show that a multi-layer capsule network achieves better results (98.5% accuracy) than deep auto-encoder (97.3% accuracy) and a convolutional neural network (96%), especially when we have digits that are highly overlapped.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.