Abstract

The human pathogenic fungus Cryptococcus neoformans has a distinctive polysaccharide (PS) capsule that enlarges during infection. The capsule is essential for virulence, but the mechanism for capsular growth is unknown. In the present study, we used dynamic light scattering (LS) analysis of capsular PS and optical tweezers (OT) to explore the architecture of the capsule. Analysis of capsular PS from cells with small and large capsules by dynamic LS revealed a linear correlation between PS effective diameter and microscopic capsular diameter. This result implied that capsule growth was achieved by the addition of molecules with larger effective diameter, such that some molecules can span the entire diameter of the capsule. Measurement of polystyrene bead penetration of C. neoformans capsules by using OT techniques revealed that the outer regions were penetrable, but not the inner regions. Our results provide a mechanism for capsular enlargement based on the axial lengthening of PS molecules and suggest a model for the architecture of a eukaryotic microbial capsule.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.