Abstract
Capsule Networks (CapsNets) excel on simple image recognition problems. However, they fail to perform on complex images with high similarity and background objects. This paper proposes Local Binary Pattern (LBP) k-means routing and evaluates its performance on three publicly available plant disease datasets containing images with high similarity and background objects. The proposed routing algorithm adopts the squared Euclidean distance, sigmoid function, and a ‘simple-squash’ in place of dot product, SoftMax normalizer, and the squashing function found respectively in the dynamic routing algorithm. Extensive experiments conducted on the three datasets showed that the proposed model achieves consistent improvement in test accuracy across the three datasets as well as allowing an increase in the number of routing iterations with no performance degradation. The proposed model outperformed a baseline CapsNet by 8.37% on the tomato dataset with an overall test accuracy of 98.80%, comparable to state-of-the-art models on the same datasets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.