Abstract

Most clinical isolates of Streptococcus pyogenes elaborate a capsular polysaccharide, which is composed of hyaluronic acid, a high-molecular-mass polymer of alternating residues of N-acetyl glucosamine and glucuronic acid. Certain strains, particularly those of the M18 serotype, produce abundant amounts of capsule, resulting in formation of large, wet-appearing, translucent or "mucoid" colonies on solid media, whereas strains of M-types 4 and 22 produce none. Studies of acapsular mutant strains have provided evidence that the capsule enhances virulence in animal models of infection, an effect attributable, at least in part, to resistance to complement-mediated opsonophagocytic killing by leukocytes. The presence of the hyaluronic acid capsule may mask adhesins on the bacterial cell wall. However, the capsule itself can mediate bacterial attachment to host cells by binding to the hyaluronic-acid binding protein, CD44. Furthermore, binding of the S. pyogenes capsule to CD44 on host epithelial cells can trigger signaling events that disrupt cell-cell junctions and facilitate bacterial invasion into deep tissues. This article summarizes the biochemistry, genetics, regulation, and role in pathogenesis of this important virulence determinant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.