Abstract

The CapsMorph® technology prepares amorphous drugs for oral delivery by encapsulating them into porous materials. Hesperidin as model compound was loaded onto AEROPERL® 300 Pharma using the wetness impregnation method. Hesperidin was dissolved in dimethyl sulfoxide (DMSO) and alternatively in DMSO with addition of Tween 80. The drug solutions were added dropwise to the porous material and subsequently DMSO was evaporated. The AEROPERL® 300 Pharma could be loaded with about 30% hesperidin in the amorphous form. Amorphous state was verified by X-ray diffraction and differential scanning calorimetry. The CapsMorph® formulation was compared regarding properties determining oral bioavailability, i.e., kinetic saturation solubility and dissolution rate to raw drug powder and hesperidin nanocrystals. The saturation solubility of CapsMorph® without Tween 80 was 654μg/ml, which is 36-fold higher than the raw drug powder (18μg/ml) and about 20 times higher than nanocrystals (30μg/ml). In vitro release was faster (100% in 10min at pH 6.8) compared to dissolution of nanocrystals with about 15%. Addition of Tween 80 to CapsMorph® lowered the solubility (168μg/ml) and slowed down the release, but provided longer times of supersaturation without precipitation of drug. Based on these data, it appears that drug loaded porous materials provide better formulations compared to nanocrystals for poorly soluble drugs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call