Abstract
Reactive hyperemia (RH) is a local, vascular response that occurs following release from mechanical occlusion of an artery, with restoration of intra-arterial pressure. The mechanism of this postocclusion hyperemia in the gut has not been identified, although metabolic, myogenic, and neurogenic mediators of this response have been proposed. The present study was conducted to evaluate a possible modulatory role for sensory innervation of the intestinal vasculature in RH, using acute and chronic treatment with capsaicin applied in different ways. In anesthetized rats, the velocity of flowing blood in the gut was determined continuously with a pulsed Doppler velocimeter, and arterial pressure was determined with a transducer. The increase in calculated intestinal vascular conductance at the height of RH (Ch), the excess volume of blood accumulating during RH, and the duration of the hyperemia were also used to quantify RH after occluding the anterior mesenteric artery for 30, 60, and 120 sec. In the initial control group of rats, the maximal increases in the velocity of flowing blood during RH were 61 +/- 4%, 90 +/- 7%, and 129 +/- 10% of control, conductances were increased to 192 +/- 5%, 222 +/- 12%, and 267 +/- 15% of control, volumes were 3.5 +/- 0.6 ml, 7.2 +/- 0.4 ml, and 16.2 +/- 1.8 ml, and durations of hyperemia were 78 +/- 5 sec, 93 +/- 6 sec, and 178 +/- 7 sec, respectively, after each elapsed period of occlusion. Acute treatment with periarterial capsaicin significantly decreased peak conductances in RH by 15-35% for all occlusions tested and reduced both volume and duration values. Rats treated with capsaicin in neonatal life exhibited reduced Ch values, as did adult rats treated chronically with capsaicin. Both periarterial and intrajejunal treatment with capsaicin decreased the duration of RH. Hexamethonium increased both Ch and the duration of RH and tended to reverse reductions in these parameters caused by capsaicin. These results suggest that sensory innervation of the intestinal vasculature exerts a modulatory influence in the regulation of intestinal RH.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.