Abstract
Capsaicin could suppress the proliferation of cancer cells and inhibit many biochemical pathways associated with tumorigenesis and metastasis. This study investigates the effects of capsaicin in both hepatocellular carcinoma (HepG2) and normal hepatocytes (HL-7702) via the SIRT1/NOX4 signaling pathway. After determination of cytotoxic concentrations of capsaicin on HL-7702 and HepG2 cells, we measured total oxidant status (TOS), reduced glutathione (GSH), 8-hydroxydeoxyguanosine (8-OHdG), cytochrome c (CYC), caspase3 (CASP3), Bcl-2, Bax, sirtuin1 (SIRT1), and NADPH oxidases4 (NOX4) levels. Besides this, we analyzed the messenger RNA and protein levels of SIRT1 and NOX4. We found that capsaicin increased TOS, 8-OHdG, CASP3, CYC, Bax, and NOX4 levels, and decreased Bcl-2, GSH, and SIRT1 in a concentration-dependent manner in HepG2 cells. However, especially low capsaicin concentration (128.75 µM) enhanced GSH and SIRT levels and reduced TOS, CASP3, CYC, 8-OHdG, and NOX4 levels in HL-7702 cells (p < 0.05). Interestingly, 128.75 and 172.8 µM capsaicin treatment increased SIRT1 expression levels in HL-7702 cells, resulting in an increase in GSH levels and a decrease in TOS, CYC, CAPS3, and 8-OHdG levels through NOX4 inhibition. Furthermore, we demonstrated a significant decrease in SIRT1 protein levels and an increase in NOX4 protein levels and caspase-3/-7 activities in both HL-7702 and HepG2 cells treated with 261.5 µM capsaicin. Additionally, morphological changes in HL-7702 and HepG2 cells treated with capsaicin correlated with the enhancement in oxidative burden, DNA damage, and apoptosis. Our results show that capsaicin effectively might cause higher oxidative, apoptotic, and DNA damage in HepG2 cells than in HL-7702 cells through the SIRT1/NOX4 signaling pathway.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.