Abstract

Glioblastoma is one of the deadliest malignant gliomas. Capsaicin is a homovanillic acid derivative that can show anti-cancer effects by regulating various signaling pathways. The aim of this study is to investigate the effects of capsaicin on cell proliferation via ferroptosis in human U87-MG and U251 glioblastoma cells. Firstly, effects of capsaicin treatment on cell viability were determined by MTT analysis. Next, cellular-proliferation and cytotoxicity assays were determined by analyzing bromodeoxyuridine (BrdU) and lactate dehydrogenase (LDH) activity, respectively. Following, acyl-CoA synthetase long chain family member 4 (ACSL4), glutathione peroxidase 4 (GPx4), 5-hydroxyeicosatetraenoic acid (5-HETE), total oxidant status (TOS), malondialdehyde (MDA), total antioxidant status (TAS) and reduced glutathione (GSH) levels were determined by ELISA. Additionally, ACSL4 and GPx4 mRNA and protein levels were analyzed. Capsaicin showed a concentration-dependent anti-proliferative effects in U87-MG and U251 cells. Cell viability was decreased in the both cell lines treated with capsaicin concentrations above 50μM, while LDH activity increased. Treatment of 121.6, 188.5, and 237.2μM capsaicin concentrations for 24h indicated an increase in ACSL4, 5-HETE, TOS and MDA levels in U87-MG and U251 cells (p < 0.05). On the other hand, we found that capsaicin administration caused a decrease in BrdU, GPx4, TAS and GSH levels in U87-MG and U251 cells (p < 0.05). Besides, ACSL4 mRNA and protein levels were increased in the glioblastoma cells treated with capsaicin, whereas GPx4 mRNA and protein levels were decreased. Finally, capsaicin might be used as a potential anticancer agent with ferroptosis-induced anti-proliferative effects in the treatment of human glioblastoma.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.