Abstract

Capsaicin induces the reversible opening of tight junctions (TJs) and enhances the delivery of hydrophilic macromolecules through a paracellular route. We previously revealed that TRPA1 is involved in the capsaicin-induced Ca2+ influx and TJ permeability increase, although there are no reports that capsaicin directly activates TRPA1. In this study, we investigated the upstream factors of TRPA1 using RNA-seq analysis, and found that the cyclooxygenase 2 (COX2) gene was upregulated by capsaicin. Cyclooxygenase 2 converts arachidonic acid (AA), a metabolite by phospholipase A2 (PLA2), to prostaglandins. Prostaglandin E2 (PGE2) production was stimulated by capsaicin, and capsaicin-induced Ca2+ influx was effectively inhibited by PLA2 and COX2 inhibitors. The AA-induced TJ permeability increase was inhibited by a TRPA1 antagonist, but the capsaicin- and AA-induced TJ permeability increases were hardly inhibited by a COX2 inhibitor. These results suggest that capsaicin-induced PLA2 activation and AA production are the important steps for the TJ permeability increase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.