Abstract

The mechanisms underlying trigeminal pain conditions are incompletely understood. In vitro animal studies have elucidated various targets for pharmacological intervention; however, a lack of clinical models that allow evaluation of viable innervated human tissue has impeded successful translation of many preclinical findings into clinical therapeutics. Therefore, we developed and characterized an in vitro method that evaluates the responsiveness of isolated human nociceptors by measuring basal and stimulated release of neuropeptides from collected dental pulp biopsies. Informed consent was obtained from patients presenting for extraction of normal wisdom teeth. Patients were anesthetized using nerve block injection, teeth were extracted and bisected, and pulp was removed and superfused in vitro. Basal and capsaicin-evoked peripheral release of immunoreactive calcitonin gene-related peptide (iCGRP) was analyzed by enzyme immunoassay. The presence of nociceptive markers within neurons of the dental pulp was characterized using confocal microscopy. Capsaicin increased the release of iCGRP from dental pulp biopsies in a concentration-dependent manner. Stimulated release was dependent on extracellular calcium, reversed by a TRPV1 receptor antagonist, and desensitized acutely (tachyphylaxis) and pharmacologically by pretreatment with capsaicin. Superfusion with phorbol 12-myristate 13-acetate (PMA) increased basal and stimulated release, whereas PGE 2 augmented only basal release. Compared with vehicle treatment, pretreatment with PGE 2 induced competence for DAMGO to inhibit capsaicin-stimulated iCGRP release, similar to observations in animal models where inflammatory mediators induce competence for opioid inhibition. These results indicate that the release of iCGRP from human dental pulp provides a novel tool to determine the effects of pharmacological compounds on human nociceptor sensitivity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.