Abstract

The effects of capsaicin on the sensory neuropeptides substance P and calcitonin gene-related peptide were analyzed in the ankle joints and dorsal root ganglia (L2-L6) of adult female Lewis rats. The study included 23 normal rats and 23 arthritic rats, all injected subcutaneously with capsaicin (total dose 200 mg/kg bw). Another two groups of animals from a previous study, i.e., 23 normal rats and 23 arthritic rats not given capsaicin served as controls. Adjuvant arthritis was induced by inoculation with heat-killed mycobacteria. The morphological distribution of sensory neuropeptides was assessed by immunohistochemistry and the tissue concentrations were determined by radioimmunoassay. In normal rats, capsaicin significantly reduced the concentrations of substance P and calcitonin gene-related peptide in ankle joints (54 and 36%, respectively) as well as dorsal root ganglia (40 and 54%, respectively). In arthritic rats those pretreated with capsaicin had significantly lower concentrations of substance P and calcitonin gene-related peptide in dorsal root ganglia (19 and 42%, respectively) compared to the arthritic controls. In the ankle joints, however, only the SP concentration was reduced (42%). Notably, this was accompanied by a 40% reduction in inflammatory response as assessed by comparing the ankle joint weights of the experimental groups. In general, there was a good correlation between the neuropeptide concentrations in ipsilateral ankle joints and the corresponding dorsal root ganglia as assessed in individual rats. The present study of adjuvant induced arthritis shows that capsaicin administration reduces the otherwise up-regulated levels of sensory neuropeptides in dorsal root ganglia and ankle joints. However, capsaicin at the dose given can only mitigate, not completely prevent the development of joint inflammation. Nonetheless, the findings suggest that antineuronal therapy targeted against specific neurotransmitters may prove useful in inflammatory joint disease.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call