Abstract

Capsaicin and zinc have recently been highlighted as potential treatments for glucose metabolism disorders; however, the effect of these two natural compounds on signalling pathways involved in glucose metabolism is still uncertain. In this study, we assessed the capsaicin- or zinc- induced activation of signalling molecules including calcium/calmodulin-dependent protein kinase 2 (CAMKK2), cAMP-response element-binding protein (CREB), and target of rapamycin kinase complex 1 (TORC1). Moreover, the expression status of genes associated with the control of glucose metabolism was measured in treated cells. The activation of cell signalling proteins was then evaluated in capsaicin- or zinc treated cells in the presence or absence of cell-permeant calcium chelator (BAPTA-AM) and the CAMKK inhibitor (STO-609). Finally, capsaicin- and zinc-induced glucose uptake was measured in the cells pre-treated with or without BAPTA-AM. Our results indicate that calcium flux induced by capsaicin or zinc led to activation of calcium signalling molecules and promoting glucose uptake in skeletal muscle cells. Pharmacological inhibition of CAMKK diminished activation of signalling molecules. Moreover, we observed an increase in intracellular cAMP levels in the cells after treatment with capsaicin and zinc. Our data show that capsaicin and zinc mediate glucose uptake in C2C12 skeletal muscle cells through the activation of calcium signalling.

Highlights

  • IntroductionThe bioactive phenolic component of chilli peppers, has potential benefits in the reduction of glucose metabolism disorders and acts through the activation of transient receptor potential cation channel subfamily V member (TRPV1) [1,3]

  • Academic Editors: Kazumi Yagasaki and Christo J.F

  • The present study demonstrates for the first time that capsaicin and zinc treatment promotes glucose uptake through calcium signalling independent of insulin in

Read more

Summary

Introduction

The bioactive phenolic component of chilli peppers, has potential benefits in the reduction of glucose metabolism disorders and acts through the activation of transient receptor potential cation channel subfamily V member (TRPV1) [1,3]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call