Abstract

Alzheimer's disease (AD), the most prominent form of dementia in elderly, is a yet incurable degenerative neurological illness characterized by memory loss. Here, we used an AD rat model to investigate the in vivo efficacy of caprospinol, a disease-modifying steroid developed on the concept that reduced synthesis of 22R-hydroxycholesterol in the AD brain increases β-amyloid neurotoxicity. Caprospinol treatment of diseased rats attenuated memory impairment, as assessed using Morris watermaze tests. This recovery of cognitive function was accompanied by a reduction in hippocampal amyloid deposits, astrogliosis, neurodegeneration and Tau protein phopshorylation. In parallel studies, caprospinol bioavailability in normal rat forebrain was found to be dependent on the dose and duration of the treatment, demonstrating the ability of the compound to cross the blood–brain barrier. These results position caprospinol as a promising drug candidate for AD treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.